Electric Power Distribution Engineering, Third ...
A quick scan of any bookstore, library, or online bookseller will produce a multitude of books covering power systems. However, few, if any, are totally devoted to power distribution engineering, and none of them are true textbooks. Filling this vacuum in the power system engineering literature, Electric Power Distribution System Engineering broke new ground.
Electric Power Distribution Engineering, Third ...
Designed specifically for junior- or senior-level electrical engineering courses, the book covers all aspects of distribution engineering from basic system planning and concepts through distribution system protection and reliability. Drawing on decades of experience to provide a text that is as attractive to students as it is useful to professors and practicing engineers, the author demonstrates how to design, analyze, and perform modern distribution system engineering. He takes special care to cover industry terms and symbols, providing a glossary and clearly defining each term when it is introduced. The discussion of distribution planning and design considerations goes beyond the usual analytical and qualitative analysis to emphasize the economical explication and overall impact of the distribution design considerations discussed.
This UFC provides policy and guidance for design criteria and standards for electrical power and distribution systems. The information provided here must be utilized by electrical engineers in the development of the plans, specifications, calculations, and Design/Build Request for Proposals (RFP) and must serve as the minimum electrical design requirements. It is applicable to the traditional electrical services customary for Design-Bid-Build construction contracts and for Design-Build construction contracts. Project conditions may dictate the need for a design that exceeds these minimum requirements.
Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.
Efficient long-distance transmission of electric power requires high voltages. This reduces the losses produced by strong currents. Transmission lines use either alternating current (AC) or direct current (DC). The voltage level is changed with transformers. The voltage is stepped up for transmission, then reduced for local distribution.
Historically, transmission and distribution lines were often owned by the same company, but starting in the 1990s, many countries liberalized the regulation of the electricity market in ways that led to separate companies handling transmission and distribution.[1]
Most North American transmission lines are high-voltage three-phase AC, although single phase AC is sometimes used in railway electrification systems. DC technology is used for greater efficiency over longer distances, typically hundreds of miles. High-voltage direct current (HVDC) technology is also used in submarine power cables (typically longer than 30 miles (50 km)), and in the interchange of power between grids that are not mutually synchronized. HVDC links stabilize power distribution networks where sudden new loads, or blackouts, in one part of a network might otherwise result in synchronization problems and cascading failures.
Commercial electric power was initially transmitted at the same voltage used by lighting and mechanical loads. This restricted the distance between generating plant and loads. In 1882, DC voltage could not easily be increased for long-distance transmission. Different classes of loads (for example, lighting, fixed motors, and traction/railway systems) required different voltages, and so used different generators and circuits.[6][7]
The first long distance AC line was 34 kilometres (21 miles) long, built for the 1884 International Exhibition of Electricity in Turin, Italy. It was powered by a 2 kV, 130 Hz Siemens & Halske alternator and featured several Gaulard transformers with primary windings connected in series, which fed incandescent lamps. The system proved the feasibility of AC electric power transmission over long distances.[7]
Working to improve what he considered an impractical Gaulard-Gibbs design, electrical engineer William Stanley, Jr. developed the first practical series AC transformer in 1885.[10] Working with the support of George Westinghouse, in 1886 he demonstrated a transformer-based AC lighting system in Great Barrington, Massachusetts. It was powered by a steam engine-driven 500 V Siemens generator. Voltage was stepped down to 100 volts using the Stanley transformer to power incandescent lamps at 23 businesses over 4,000 feet (1,200 m).[11] This practical demonstration of a transformer and alternating current lighting system led Westinghouse to begin installing AC systems later that year.[10]
The first transmission of single-phase alternating current using high voltage came in Oregon in 1890 when power was delivered from a hydroelectric plant at Willamette Falls to the city of Portland 14 miles (23 km) down river.[17] The first three-phase alternating current using high voltage took place in 1891 during the international electricity exhibition in Frankfurt. A 15 kV transmission line, approximately 175 km long, connected Lauffen on the Neckar and Frankfurt.[9][18]
Transmission voltages increased throughout the 20th century. By 1914, fifty-five transmission systems operating at more than 70 kV were in service. The highest voltage then used was 150 kV.[19] Interconnecting multiple generating plants over a wide area reduced costs. The most efficient plants could be used to supply varying loads during the day. Reliability was improved and capital costs were reduced, because stand-by generating capacity could be shared over many more customers and a wider area. Remote and low-cost sources of energy, such as hydroelectric power or mine-mouth coal, could be exploited to further lower costs.[6][9]
The 20th century's rapid industrialization made electrical transmission lines and grids critical infrastructure. Interconnection of local generation plants and small distribution networks was spurred by World War I, when large electrical generating plants built by governments to power munitions factories.[20]
A transmission grid is a network of power stations, transmission lines, and substations. Energy is usually transmitted within a grid with three-phase AC. Single-phase AC is used only for distribution to end users since it is not usable for large polyphase induction motors. In the 19th century, two-phase transmission was used but required either four wires or three wires with unequal currents. Higher order phase systems require more than three wires, but deliver little or no benefit.
The slowly varying portion of demand is known as the base load and is generally served by large facilities with constant operating costs, termed firm power. Such facilities are nuclear, coal or hydroelectric, while other energy sources such as concentrated solar thermal and geothermal power have the potential to provide firm power. Renewable energy sources, such as solar photovoltaics, wind, wave, and tidal, are, due to their intermittency, not considered to be firm. The remaining or "peak" power demand, is supplied by peaking power plants, which are typically smaller, faster-responding, and higher cost sources, such as combined cycle or combustion turbine plants typically fueled by natural gas.
Transmitting electricity at high voltage reduces the fraction of energy lost to Joule heating, which varies by conductor type, the current, and the transmission distance. For example, a 100 mi (160 km) span at 765 kV carrying 1000 MW of power can have losses of 0.5% to 1.1%. A 345 kV line carrying the same load across the same distance has losses of 4.2%.[24] For a given amount of power, a higher voltage reduces the current and thus the resistive losses. For example, raising the voltage by a factor of 10 reduces the current by a corresponding factor of 10 and therefore the I 2 R \displaystyle I^2R losses by a factor of 100, provided the same sized conductors are used in both cases. Even if the conductor size (cross-sectional area) is decreased ten-fold to match the lower current, the I 2 R \displaystyle I^2R losses are still reduced ten-fold using the higher voltage.
US transmission and distribution losses were estimated at 6.6% in 1997,[27] 6.5% in 2007[27] and 5% from 2013 to 2019.[28] In general, losses are estimated from the discrepancy between power produced (as reported by power plants) and power sold; the difference constitutes transmission and distribution losses, assuming no utility theft occurs.
No fixed cutoff separates subtransmission and transmission, or subtransmission and distribution. Their voltage ranges overlap. Voltages of 69 kV, 115 kV, and 138 kV are often used for subtransmission in North America. As power systems evolved, voltages formerly used for transmission were used for subtransmission, and subtransmission voltages became distribution voltages. Like transmission, subtransmission moves relatively large amounts of power, and like distribution, subtransmission covers an area instead of just point-to-point.[29]
Should an ideal transformer convert high-voltage, low-current electricity into low-voltage, high-current electricity with a voltage ratio of a \displaystyle a (i.e., the voltage is divided by a \displaystyle a and the current is multiplied by a \displaystyle a in the secondary branch, compared to the primary branch), then the circuit is again equivalent to a voltage divider, but the wires now have apparent resistance of only R C / a 2 \displaystyle R_C/a^2 . The useful power is then: 041b061a72